Solvent control of the soft angular potential in hydroxyl-pi hydrogen bonds: inertial orientational dynamics.
نویسندگان
چکیده
Ultrafast polarization and wavelength selective IR pump-probe spectroscopy is used to measure the inertial and long time orientational dynamics of pi-hydrogen bonding complexes. Inertial orientational relaxation is sensitive to the angular potential associated with the hydrogen bond. The complexes studied are composed of phenol-OD (hydroxyl hydrogen replaced by deuterium) and various pi-base solvents with different electron donating or withdrawing substituents (chlorobenzene, bromobenzene, benzene, toluene, p-xylene, mesitylene, 1-pentyne). The different substituents provide experimental control of the hydrogen bond strength. The inertial orientational relaxation of the complexes, measured at the center frequency of each line, is independent of the hydrogen bond strength, demonstrating the insensitivity of the OD inertial dynamics, and therefore the H-bond angular potential, to the hydrogen bond strength. OD stretch absorption bands are inhomogeneously broadened through interactions with the solvent. The hydrogen bonding complexes all have similar wavelength dependent inertial orientational relaxation across their inhomogeneously broadened OD stretch absorption lines. The wavelength dependence of the inertial reorientation across each line arises because of a correlation between local solvent structure and the angular potential. These two results imply that local solvent structure acts as the controlling influence in determining the extent of inertial orientational relaxation, and therefore the angular potential, and that variation in the pi-hydrogen bond strength is of secondary importance.
منابع مشابه
Water inertial reorientation: hydrogen bond strength and the angular potential.
The short-time orientational relaxation of water is studied by ultrafast infrared pump-probe spectroscopy of the hydroxyl stretching mode (OD of dilute HOD in H(2)O). The anisotropy decay displays a sharp drop at very short times caused by inertial orientational motion, followed by a much slower decay that fully randomizes the orientation. Investigation of temperatures from 1 degrees C to 65 de...
متن کاملClassical molecular-dynamics simulation of the hydroxyl radical in water.
We have studied the hydration and diffusion of the hydroxyl radical OH0 in water using classical molecular dynamics. We report the atomic radial distribution functions, hydrogen-bond distributions, angular distribution functions, and lifetimes of the hydration structures. The most frequent hydration structure in the OH0 has one water molecule bound to the OH0 oxygen (57% of the time), and one w...
متن کاملAn ab initio molecular dynamics study of water–carbon tetrachloride liquid–liquid interface: nature of interfacial structure, hydrogen bonds and dynamics
We present a theoretical study of the structure and dynamics of water–carbon tetrachloride liquid–liquid interface by means of ab initio molecular dynamics simulations. We have studied the density profiles, orientational profiles, hydrogen bond distributions, vibrational power spectra, diffusion, orientational relaxation, hydrogen bond dynamics and vibrational spectral diffusion of bulk and int...
متن کاملDynamics of water, methanol, and ethanol in a room temperature ionic liquid.
The dynamics of a series of small molecule probes with increasing alkyl chain length: water, methanol, and ethanol, diluted to low concentration in the room temperature ionic liquid 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, was investigated with 2D infrared vibrational echo (2D IR) spectroscopy and polarization resolved pump-probe (PP) experiments on the deuterated hydroxyl...
متن کاملDynamics of water interacting with interfaces, molecules, and ions.
Water is a critical component of many chemical processes, in fields as diverse as biology and geology. Water in chemical, biological, and other systems frequently occurs in very crowded situations: the confined water must interact with a variety of interfaces and molecular groups, often on a characteristic length scale of nanometers. Water's behavior in diverse environments is an important cont...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The journal of physical chemistry. B
دوره 113 40 شماره
صفحات -
تاریخ انتشار 2009